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Leaf spots and root rots are major fungal diseases in Camptotheca acuminata that limit cultivation of
the plant for camptothecin (CPT), a promising anticancer and antiviral alkaloid. Bioassays showed
that pure CPT and flavonoids (trifolin and hyperoside) isolated from Camptotheca effectively control
fungal pathogens in vitro, including Alternaria alternata, Epicoccum nigrum, Pestalotia guepinii,
Drechslera sp., and Fusarium avenaceum, although antifungal activity of these compounds in the
plant is limited. CPT inhibited mycelial growth by approximately 50% (EC50) at 10-30 µg/mL and
fully inhibited growth at 75-125 µg/mL. The flavonoids were less effective than CPT at 50 µg/mL,
particularly within 20 days after treatment, but more effective at 100 or 150 µg/mL. CPT, trifolin, and
hyperoside may serve as leads for the development of fungicides.
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INTRODUCTION

CamptothecaDecaisne (happytrees) of the family Nyssaceae
is the major source of camptothecin (CPT) and its analogues,
promising anticancer and antiviral indole alkaloids (1). The
structure of CPT isolated fromCamptotheca acuminataDecaisne
was reported in 1966 (2, 3). Two CPT drugs, Hycamtin and
Camptosar, have received FDA approval for the treatment of
ovarian and lung cancers and for colorectal cancer, respectively
(3). Together they account for nearly 8% of the total $15 billion
of the global cancer drug market. Orathecin is being considered
by the FDA for accelerated approval for the treatment of
pancreatic cancer, with 14 other CPT drugs currently undergoing
clinical trials (4). CPTs also show promising potential as
antiviral (HIV and herpes) (1), antifungal (Candida) (5), and
antipsoriasis (1) drugs, and as pesticides (6). To date, com-
mercial CPT synthesis is not feasible, and supplies of CPT
required to manufacture the drugs are now extracted from the
fruits of C. acuminata, listed as an endangered species in China
since 1997 (4). Cultivation of the tree is limited because it grows
in subtropical climates. Moreover, the tree takes approximately
10 years to produce a stable fruit yield. Recently, two new
species ofCamptothecawere added to the previously monotypic
genus, and several high-yielding cultivars such as Katie have
been developed to harvest intact young vegetative tissues (4).
Furthermore, “trichome management” was developed to induce
the biosynthesis of CPTs to levels 16-20 times that normally

observed inCamptotheca(7). Eleven years of greenhouse and
field trials in Texas have shown great potential for future supply
of CPTs (Camptotech, Inc., unpublished data).

Fungal diseases, particularly leaf spots and root rots, are the
main limiting factors in the cultivation ofCamptothecain
plantations for vegetative biomass and CPT production. In a
preliminary study, seven fungal pathogens have been isolated
from various tissues ofC. acuminata: Alternaria alternata,
Epicoccum nigrum, andPestalotia guepiniicaused leaf spots;
Discula umbrinella,Drechslerasp., andNectriasp.;Fusarium
aVenaceumcaused root rots (8). Interestingly, however, we
observed that fungal diseases were primarily found on the
Camptothecavarieties and tissues with lower CPT contents,
while fungal inoculation on young leaf tissues with high CPT
content failed. Considering CPT’s potent bioactivity against
tumors, viruses, pests, andCandida(1, 5, 6), we conducted this
in vitro antifungal assay to determine if CPT inhibits the fungi
that often infect theCamptothecatrees. In addition to the
alkaloid CPT, trifolin and hyperoside (Figure 1), two flavonoids
abundantly occurring inC. acuminataleaves (9), are included
in this study. These flavonoids commonly occur in a wide range
of plants and have shown bactericidal activity (10, 11). Abou
Zeid found that crude extracts and flavonoids isolated from
banana (Musa), including trifolin and hyperoside, have some
antifungal activities (12). However, several anomalous reports
lead to uncertainty as to the antifungal activities of trifolin and
hyperoside. Funayama et al. (1995) found that trifolin was
inactive against yeasts at 1000µg/mL (13). Lu et al. (2002)
found that hyperoside was inactive in in vitro bioassays against
yeasts, Fusarium, and other fungi at>100 µg/mL (14).
Dall’Agnol et al. reported that crude extracts ofHypericum,
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including hyperoside, showed no activity against yeast (15). The
present study investigates the in vitro antifungal activity of CPT,
trifolin, and hyperoside, naturally occurring inC. acuminata,
against five fungi isolated from the leaves. The results will
provide a basis for developing strategies to control fungal
pathogens inCamptothecaplantations and to enhance CPT
production.

MATERIALS AND METHODS

Plant Materials. Leaves ofC. acuminatawere collected in Nacog-
doches, TX, in June 2002. A voucher specimen (S. Y. Li and Z. Z.
Zhang US-TX-AH-02-0601012) has been deposited at the Center for
Medicinal Plant Research of Stephen F. Austin State University.

Chemical Analyses.Camptothecin (1), trifolin (2), and hyperoside
(3) (Figure 1) were previously isolated from the leaves ofC. acuminata
(9). Their structures were determined by spectroscopic methods. The
1H and13C NMR data of these compounds are in agreement with those
from refs16-18. General experimental procedures and extraction and
isolation methods are described in detail in ref9.

Antifungal Assays.A. alternata, E. nigrum, P. guepinii, Drechslera
sp., andF. aVenaceumwere isolated from infected leaves and roots of
C. acuminatagrown in Nacogdoches, TX, in 2001 and 2002. The strains
were cultured and maintained on potato dextrose agar (PDA) medium
at 24°C.

CPT, trifolin, and hyperoside isolated fromC. acuminatawere tested
for their ability to inhibit these fungi with two standard classical
fungicides, Bravo (active ingredient chlorothalonil) and Maneb (active
ingredient manganous ethylenebis[dithiocarbamate]). The concentrations
of the fungicides were those recommended by the manufacturers (Bravo,
10000µg/mL; Maneb, 3000µg/mL). In addition to a negative control
(0) and two fungicides as positive controls for each of the five isolated
pathogens, seven concentrations of CPT were tested with each of the
fungi and three levels of trifolin and hyperoside were tested withP.
guepinii, Drechslerasp., andF. aVenaceum, respectively (Table 1).
Trifolin and hyperoside treatments were applied at concentrations of
50, 100, and 150µg/mL, respectively. For all cultures, final concentra-
tions were made in molten (50°C) potato dextrose agar (Difco), and
10 mL aliquots were poured into Petri dishes (85 mm in diameter).
Within 24 h after pouring, each of the plates was inoculated with one
of the five fungi. One 5× 5 mm mycelial plug was cut from the actively
growing front of a 2 week old colony, then placed with the inoculum
side down in the center of each treatment plate, and incubated at 24

°C. For all experiments, five replicate plates were inoculated for each
treatment.

Mycelial growth on each plate was observed daily, recorded on a
transparent film for the first two weeks, and then recorded on the 16th,
20th, 23rd, and 28th days. Colony radii were measured along four
vertical radial directions. The mean of the four measurements was
calculated as the growth rate on each plate. The mean and standard
error were calculated from the five replicates of each treatment. For
each of the fungi, values of EC50 and MIC of each compound were
estimated.

RESULTS

Antifungal Activity against A. alternata.CPT significantly
inhibitedAlternariagrowth at 10µg/mL (CPT-10) (p < 0.001).
Colonies exposed to CPT-10 were inhibited 41-66%; it took
23 days for mycelium under the CPT-10 treatment to completely
cover the agar surface, compared to 13 days under the control
treatment. CPT-25 (CPT at 25µg/mL) was similar to Bravo in
its ability to inhibit A. alternata(Figure 2). Colonies in both
treatments started to grow on the second day of the experiment,
and their radii were always within about 1 mm of one another.
CPT-25 colony expansion was reduced by 215% (28 days to
cover the agar surface vs 13 days for the control). On day 13,
colonies in the CPT-25 treatment were 52.8% smaller than those
of the controls. Thus, it is estimated that the EC50 of CPT for
A. alternatais <25 µg/mL. The CPT-50 treatment was able to
inhibit fungal growth by more than 180%. The fungus was
totally controlled by CPT at 75µg/mL (CPT-75) and above,
and by Maneb.

Table 1. Experimental Concentrations of Three Compounds (CPT, Trifolin, and Hyperoside) Isolated from Camptotheca Leaves for in Vitro Tests
against Five Fungi Isolated from C. acuminata

concn (µg/mL)

fungus control CPT trifolin hyperoside Maneba Bravob

A. alternata 0 10, 25, 50, 75, 100, 125, 150 3000 10000
E. nigrum 0 10, 25, 50, 75, 100, 125, 150 3000 10000
P. guepinii 0 10, 30, 50, 70, 100, 125, 150 50, 100, 150 50, 100, 150 3000 10000
Drechslera sp. 0 10, 30, 50, 70, 100, 125, 150 50, 100, 150 50, 100, 150 3000 10000
F. avenaceum 0 10, 30, 50, 70, 100, 125, 150 50, 100, 150 50, 100, 150 3000 10000

a The concentration of active ingredient chlorothalonil. b The concentration of active ingredient manganous ethylenebis[dithiocarbamate].

Figure 1. CPT and flavonoids, namely, trifolin and hyperoside, isolated
from C. acuminata leaves.

Figure 2. Effect of different concentrations of CPT, Bravo, and Maneb
on mycelial growth of A. alternata: CPT, 10 µg/mL (CPT-10), 25 µg/mL
(CPT-25), 50 µg/mL (CPT-50), 75 µg/mL (CPT-75), 100 µg/mL (CPT-
100), 125 µg/mL (CPT-125), and 150 µg/mL (CPT-150); Bravo, 10000
µg/mL; Maneb, 3000 µg/mL. Points and bars represent the means and
standard errors of five replicates.
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Antifungal Activity against E. nigrum. E. nigrum grew
faster thanA. alternataunder control conditions in the experi-
ment, with colonies covering the agar surface in 10 days (Figure
3). However, this fungus was more strongly inhibited by CPT
and fungicide thanA. alternata. CPT at 10 and 25µg/mL
delayed mycelial growth ofE. nigrum by 280% (28 days to
cover the agar surface vs 10 days for the control). CPT-10 and
CPT-25 treatments were not significantly different in inhibiting
E. nigrum. On day 10, colonies in the CPT-10 treatment were
65% smaller than those of the controls. Thus, the EC50 of CPT
for E. nigrumis estimated to be<10 µg/mL. Similar to results
with A. alternata, CPT at 50µg/mL inhibited growth ofE.
nigrum by >90% while CPT at 75µg/mL and higher concen-
trations, as well as Maneb, totally inhibited growth. Bravo
treatment was slightly superior to CPT-10 and CPT-25 treat-
ment. Colonies exposed to Bravo did not start to grow until the
fifth day; by day 15 they had radii of 13 mm compared to 20
mm in the CPT-25 treatment. The CPT-50 treatment was
superior to Bravo treatment. Under this treatment, growth did
not begin until the eighth day of the experiment. On day 20,
colony radii measured 19 mm under Bravo treatment but only
8 mm when exposed to CPT-50.

Antifungal Activity against P. guepinii.P. guepiniishowed
a growth pattern similar to that ofE. nigrum under control
conditions (Figure 4). CPT-10 reduced mycelial growth by
43.5% on the 11th day when the fungus under the control
treatment had covered the agar surface. Colonies exposed to
CPT-10 treatment did not reach the Petri dish margins until day
20. Thus, it is estimated that the EC50 of CPT forP. guepiniiis
approximately 10µg/mL. However, CPT totally inhibited
growth only atg125µg/mL. Both fungicides also successfully
controlledP. guepinii. Trifolin and hyperoside were similar in
their abilities to inhibitP. guepinii. On day 11, colonies exposed
to either trifolin-50 or hyperoside-50 were inhibited by 53.4%
and 53.8%, respectively. The EC50 of both flavonoids forP.
guepinii is estimated to be approximately 50µg/mL. However,
as concentrations increased to 100µg/mL, the flavonoids were
more effective in inhibition ofP. guepiniithan CPT; MICs of
both trifolin and hyperoside forP. guepiniiare most likely below
125µg/mL, the level at which CPT successfully controlled the
fungus.

Antifungal Activity against Drechslerasp. Drechslerasp.
grew more slowly thanA. alternata, E. nigrum, andP. guepinii
under control conditions but was also more sensitive to CPT,
flavonoids, and fungicides than the other fungi tested (Figure
5). CPT at all experimental levels showed greater inhibition rates
than Bravo. This fungicide reduced mycelial growth by 54.4%
on day 20, when control mycelium completely covered the agar
surface. Thus, the EC50 of CPT forDrechslerais <10 µg/mL.
However, CPT only completely inhibited fungal growth atg100
µg/mL. Trifolin-50 and hyperoside-50 (trifolin and hyperoside

Figure 3. Effect of different concentrations of CPT, Bravo, and Maneb
on mycelial growth of E. nigrum: CPT, 10 µg/mL (CPT-10), 25 µg/ mL
(CPT-25), 50 µg/mL (CPT-50), 75 µg/mL (CPT-75), 100 µg/mL (CPT-
100), 125 µg/mL (CPT-125), and 150 µg/mL (CPT-150); Bravo, 10000
µg/mL; Maneb, 3000 µg/mL. Points and bars represent the means and
standard errors of five replicates.

Figure 4. Effect of different concentrations of CPT, trifolin, hyperoside,
Bravo, and Maneb on mycelial growth of P. quepinii: CPT, 10 µg/mL
(CPT-10), 30 µg/mL (CPT-30), 50 µg/mL (CPT-50), 70 µg/mL (CPT-70),
100 µg/mL (CPT-100), 125 µg/mL (CPT-125), and 150 µg/mL (CPT-
150); trifolin, 50 µg/mL (Trifolin-50), 100 µg/mL (Trifolin-100), and 150
µg/mL (Trifolin-150); hyperoside, 50 µg/mL (Hyperoside-50), 100 µg/mL
(Hyperoside-100), and 150 µg/ mL (Hyperoside-150); Bravo, 10000 µg/
mL; Maneb, 3000 µg/mL. Points and bars represent the means and
standard errors of five replicates.

Figure 5. Effect of different concentrations of CPT, trifolin, hyperoside,
Bravo, and Maneb on mycelial growth of Drechslera sp.: CPT, 10 µg/
mL (CPT-10), 30 µg/mL (CPT-30), 50 µg/mL (CPT-50), 70 µg/mL (CPT-
70), 100 µg/mL (CPT-100), 125 µg/mL (CPT-125), and 150 µg/mL (CPT-
150); trifolin, 50 µg/mL (Trifolin-50), 100 µg/mL (Trifolin-100), and 150
µg/mL (Trifolin-150); hyperoside, 50 µg/mL (Hyperoside-50), 100 µg/mL
(Hyperoside-100), and 150 µg/mL (Hyperoside-150); Bravo, 10000 µg/
mL; Maneb, 3000 µg/mL. Points and bars represent the means and
standard errors of five replicates.
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at 50µg/mL) were similar in their ability to inhibitDrechslera.
On day 20, colonies exposed to either trifolin-50 or hyperoside-
50 were inhibited by 76.1% and 74.3%, respectively. Thus, the
EC50 values of both flavonoids againstDrechsleraare<50 µg/
mL. Hyperoside-100 (hyperoside at 100µg/mL) inhibited fungal
growth successfully, with little growth by day 28, while trifolin-
100 (trifolin at 100µg/mL) totally controlled the fungus over
the course of the entire experiment. CPT atg100µg/mL, trifolin
at g100 µg/mL, hyperoside at 150µg/mL, and Maneb com-
pletely inhibitedDrechslera.

Antifungal Activity against F. aWenaceum.F. aVenaceum
exhibited the slowest growth rate of all experimental fungi under
control conditions, but was somewhat less sensitive to CPT,
flavonoids, and fungicides (Figure 6). Bravo showed effective
inhibition of mycelial growth during the first several days of
the experiment but was less effective in the later stages. On
day 28, mycelium with Bravo treatment completely covered the
agar surface similar to the control colonies. CPT-10 was much
more effective than Bravo, with 70-80% inhibition of mycelial
growth during the first several days of the experiment and
approximately 40% inhibition in the later stages. CPT-30
inhibited the rate of mycelial growth by>60%. Thus, the EC50

of CPT forF. aVenaceumis estimated to be between 10 and 30
µg/mL. Higher levels of CPT more effectively inhibited mycelial
growth, but complete inhibition was not achieved until 125µg/
mL. Trifolin and hyperoside exhibited similar inhibition patterns
at 100µg/mL, but trifolin was more effective than hyperoside
at 50µg/mL. Trifolin-50 and hyperoside-50 were less effective
againstF. aVenaceumthan Bravo and CPT-10 at the beginning
of the experiment but more effective than Bravo and similar to
CPT-10 during the later stages of the experiment. On day 28,
trifolin and hyperoside inhibited fungal growth by 35.8% and
31.6%, respectively, at 50µg/mL, and by 74.8% and 72.6%,
respectively, at 100µg/mL. Thus, it is estimated that EC50 values
of both flavonoids againstF. aVenaceumare between 50 and
100 µg/mL. Hyperoside at 150µg/mL completely inhibited
fungal growth during the first four weeks, while trifolin at the

same level totally controlled the fungus during the entire
experiment. CPT atg125 µg/mL and Maneb also completely
inhibited growth ofF. aVenaceum.

DISCUSSION

Fungal Pathogens ofC. acuminata.Leaf spots caused by
Alternaria, Epicoccum, andPestalotiaand root rots caused by
Fusariumare major fungal diseases affecting biomass and CPT
production inC. acuminatacultivation.Alternaria is commonly
found on leaf spots and dead tissues ofC. acuminata. Leaf spots
often increase in severity as the season progresses and leaves
become mature (19). Leaves die and drop off prematurely, and
yields decreased as a result of the plant’s decreased ability to
carry out photosynthesis.E. nigrumis a common cause of leaf
spots inC. acuminata. It is a cosmopolitan saprophyte found
on many plants, textiles, paper products, and foodstuffs, in soils,
and in air samples.P. guepiniiis primarily a secondary pathogen.
It is saprophytic on dead and dying tissues and is weakly
parasitic, infecting through wounds under moist conditions.
Drechslerasp. are either plant pathogens or saprobes.Fusarium
is a soil-borne fungus with worldwide distribution, particularly
throughout tropical and subtropical areas.

Antifungal Activity of Alkaloid and Flavonoids Isolated
from C. acuminata.Bioassays showed that the pure alkaloid
CPT and the flavonoids trifolin and hyperoside isolated from
C. acuminatacan effectively inhibit the above fungal pathogens
in vitro. CPT can effectively inhibit mycelial growth by 50%
(EC50) at relatively low concentrations: approximately 10µg/
mL for E. nigrum,P. guepinii, andDrechslerasp., <25 µg/
mL for A. alternata, and<30 µg/mL for F. aVenaceum(Table
2). Higher levels of CPT more effectively inhibited mycelial
growth, but the minimal inhibitory concentration varied among
the fungi: approximately 75µg/mL for A. alternataand E.
nigrum, 100 µg/mL for Drechslera sp., 125µg/mL for P.
guepiniiandF. aVenaceum. The flavonoids were less effective
than the alkaloid CPT at 50µg/mL, particularly during the first
three weeks, but more effective than the alkaloid atg100 µg/
mL during the whole experimental period. Maneb successfully
controlled all fungi, while Bravo failed to completely suppress
all tested fungi exceptP. guepinii. Both the alkaloid and
flavonoids at all experimental concentrations were more potent
in inhibiting Drechslerasp. andF. aVenaceumthan Bravo, while
the alkaloid atg50 µg/mL more effectively suppressed growth
of A. alternataandE. nigrumthan Bravo.

The fungi varied in their sensitivity to the alkaloid, flavonoids,
and fungicides. The leaf spot fungiA. alternataandE. nigrum
grew fast in control plates, but both were inhibited by CPT at
relatively low concentrations.P. guepinii, another fast-growing
fungus associated with leaf spots, required higher concentrations

Figure 6. Effect of different concentrations of CPT, trifolin, hyperoside,
Bravo, and Maneb on mycelial growth of F. avenaceum: CPT, 10 µg/mL
(CPT-10), 30 µg/mL (CPT-30), 50 µg/mL (CPT-50), 70 µg/mL (CPT-70),
100 µg/mL (CPT-100), 125 µg/mL (CPT-125), and 150 µg/mL (CPT-
150); trifolin, 50 µg/mL (Trifolin-50), 100 µg/mL (Trifolin-100), and 150
µg/mL (Trifolin-150); hyperoside, 50 µg/mL (Hyperoside-50), 100 µg/mL
(Hyperoside-100), and 150 µg/mL (Hyperoside-150); Bravo, 10000 µg/
mL; Maneb, 3000 µg/mL. Points and bars represent the means and
standard errors of five replicates.

Table 2. Inhibition of Alkaloid and Flavonoids Isolated from
C. acuminata against Mycelial Growth of Fungia

EC50 (µg/mL) MIC (µg/mL)

fungus CPT trifolin hyperoside CPT trifolin hyperoside

A. alternata <25 <75
E. nigrum <10 <75
P. guepinii 10 <50 <50 <125 100−150 100−150
Drechslera sp. <10 <50 <50 <100 <100 100−150
F. avenaceum 10−30 75 75 <125 <125 >150

a Both EC50 (effective concentration that caused 50% inhibition of mycelial growth)
and MIC (minimum inhibitory concentration) are the average of five replicates
measured when the fungus completely covered the agar surface under control
conditions.
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of CPT for complete inhibition.Drechslerasp. grew slowly
and were more sensitive to all tested chemicals thanP. guepinii
and F. aVenaceum. F. aVenaceumwas the slowest growing
isolate but least sensitive to all chemicals at lower concentra-
tions.

Dithiocarbamates are organic fungicides commonly used for
the treatment of soil, seeds, and foliar and postharvest diseases
of some crops. Rafin et al. found that dithiocarbamates,
including Maneb,N,N-diethyldithiocarbamic acid sodium salt,
and some new synthetic compounds, inhibited growth of
Fusarium oxysporumf. sp. lini by 7-30% at 100 ppm (100
µg/mL) (20). At the same concentrations CPT, trifolin, and
hyperoside inhibited growth of the related fungal pathogenF.
aVenaceumby 70% in vitro.

CPT, trifolin, and hyperoside also showed more potent
antifungal activity than some recently discovered natural anti-
fungal products. As the most potent antifungal compound of
the essential oils of 13 herbs selected by Sridhar et al., geraniol
isolated from cymbopogan (Cymbopogan martini) inhibited
growth of Botrytis cinereain both in vitro tests and TLC
bioautography with an MIC of 160µg/mL (21). Essential oils
of SalVia sclarea L. (Lamiaceae) inhibited growth ofF.
oxysporumf. sp.dianthi by 72% at 2000µL/L (22). â-Asarone
from rhizomes ofAcorus gramineusSolander (Araceae) was
effective against mycelial growth ofAlternaria mali(with MIC
> 100 µg/mL) andF. oxysporumf. sp. lycopersici(with MIC
> 100 µg/mL) (23). Vanillin, 4-hydroxy-3-methoxycinnamal-
dehyde, and (()-pinoresinol isolated fromMelia azedarachL.
(Meliaceae) controlledFusariumVerticillioides at higher con-
centrations (with MICs of 600, 400, and 1000µg/mL, respec-
tively) (24).

Due to a dramatic increase in pathogen resistance to both
agrochemical and pharmaceutical fungicides, discovery of new
antimicrobial compounds with new modes of action is becoming
increasingly important. CPT, trifolin, and hyperoside have more
potent antifungal activity than many newly discovered antifungal
agents, including some fungicides on the market. CPTs are
potent inhibitors of the enzyme DNA topoisomerase I (1), which
has not been previously targeted in fungicide development. Thus,
CPTs with this unique mechanism of action, particularly some
water-soluble CPT analogues, should be further investigated as
antifungal agents. The flavonoids trifolin and hyperoside are
abundant inCamptothecaand some other plants. Although their
mechanisms of action against fungi are unknown, their ef-
fectiveness, resource availability at low cost, and probable low
toxicity to humans give the flavonoids potential as prototypes
for fungicides.

Chemical Defense ofC. acuminata.Two interesting patterns
were observed upon correlation of concentrations of defensive
compounds and fungal pathogen distribution. First,C. acuminata
plants can be infected byA. alternata,E. nigrum,P. guepinii,
Drechslerasp., andF. aVenaceum, although the affected tissues
may have concentrations of CPT and flavonoids much higher
than the MICs of these compounds against these fungi in vitro.
For example, mature and old leaves have CPT concentrations
of at least 0.01-0.025% (on a fresh mass basis, equivalent to
100-250µg/mL) (7) but are frequently affected by leaf spots
(A. alternata, E. nigrum, andP. guepinii). Trifolin and hypero-
side may have contents 20 times higher than that of CPT; thus,
the total content of all three antifungal compounds in these
mature and old leaves may reach 0.4-1.0% (on a fresh mass
basis), approximately 40-100 times higher than their in vitro
MICs. Clearly, the defense of CPT and flavonoids in plants
cannot be measured by in vitro testing of isolates alone. On the

other hand, however, fungal diseases are less serious in some
higher CPT yielding varieties and during seasons with higher
CPT concentrations. Cultivars with higher CPT contents have
fewer fungal problems. Fungal pathogens are less serious in
fast-growing seasons (May and June) with higher CPT contents
than early spring or fall when tissues have much lower CPT
concentrations. From this point of view, resistance against fungal
pathogens of plants can be improved by cultivar development
and culture technology.

CPT, trifolin, and hyperoside exhibit potent activity against
all five fungal pathogens isolated fromC. acuminatain in vitro
assays, but their antifungal activity in the plant is very limited.
Further investigations on the balance of fungal infection and
chemical defense are needed to understand this puzzle and to
enhance alkaloidal biosynthesis inCamptotheca. In fact, a
question about autotoxicity of CPTs inCamptothecahas never
been addressed. CPTs are potent inhibitors of DNA topo-
isomerase and affect cell growth of almost all organisms, but
why do CPTs not poison cells in livingCamptothecaplants?
The bioavailability of CPTs in plants may provide a starting
point for further analysis to understand this question.
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